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An n-degree-of-freedom quasi-non-integrable-Hamiltonian system is first
reduced to an Itô equation of one-dimensional averaged Hamiltonian by using the
stochastic averaging method developed by the first author and his coworkers. The
necessary and sufficient conditions for the asymptotic stability in probability of
the trivial solution of the quasi-non-integrable-Hamiltonian system are then
obtained approximately by examining the sample behaviors of the one-dimen-
sional diffusion process of the square-root of averaged Hamiltonian at the two
boundaries. A system of linearly and non-linearly coupled two non-linearly
damped oscillators subject to parametric excitations of Gaussian white noises is
employed as an example to illustrate the procedure, and the effects of non-linear
damping and non-linear coupling on the stability are analyzed in detail.
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1. INTRODUCTION

Motion stability is a basic qualitative behavior of a dynamical system and it is
defined in terms of boundedness near and convergence to a known solution.
Instability of a dynamic system may lead to failure of the system. Stability or
instability is thus a very important topic for the dynamical systems in science and
engineering.

There are many types of stability definitions for deterministic dynamical systems
and even more for stochastic dynamical systems [1], since convergence of a
stochastic sequence can be interpreted in several different ways. Stochastic stability
has been investigated extensively for linear systems. For non-linear stochastic
systems, very few results have been obtained [2]. For a dynamical system governed
by a one-dimensional Itô stochastic differential equation, Kozin and Sunahara [3],
Sri Namachchivaya [4] and Zhang [5] showed that the necessary and sufficient
conditions for the asymptotic stability in probability of the trivial solution can be
obtained by examining the sample behavior of the system at the trivial solution.
Recently, Lin and Cai [6] showed that the sample behaviors at both of the two
boundaries, not just the one at the trivial solution, should be examined in order
that the necessary and sufficient conditions for the asymptotic stability in
probability can be obtained. They concluded that the trivial solution was
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asymptotic stable if and only if it was a exit or attractively natural, and the other
boundary was an entrance or repulsively natural. They reduced a non-linear
damped oscillator and an oscillator with non-linear restoring force subject to
parametric excitation of Gaussian white noise to a one-dimensional diffusion
process, using stochastic averaging [7] and quasi-conservative averaging [8, 9],
respectively. Then they obtained the necessary and sufficient conditions for the
asymptotic stability in probability of the systems from examining the sample
behaviors of the averaged one-dimensional diffusion process at the two
boundaries.

It has been shown that the response of a quasi-non-integrable-Hamiltonian
system (a non-integrable-Hamiltonian system of n-degrees-of-freedom (DOF)
subject to lightly linear and/or non-linear damping and parametric and (or)
external excitations of Gaussian white noises of small intensities) converges in
probability to a one-dimensional diffusion process of averaged Hamiltonian as the
damping and excitations approach zero, and therefore, the stochastic averaging
method for quasi-non-integrable-Hamiltonian systems has been developed by the
first author and his coworker [10]. Thus, it is possible in principle to determine
approximately the necessary and sufficient conditions for the asymptotic stability
in probability of the trivial solution of a quasi-non-integrable-Hamiltonian
system by examining the sample behaviors of the one-dimensional diffusion
process of the square-root of the averaged Hamiltonian at the two boundaries.
However, the drift and diffusion coefficients of the one-dimensional diffusion
process of the square-root of averaged Hamiltonian are defined by quite
complicated multi-fold integrals. Asymptotic estimation of the integrals is thus
necessary to examine the sample behaviors of the one-dimensional diffusion
process at the boundaries.

In the present paper, the criteria for the classification of the boundary of the
one-dimensional diffusion process are first reviewed and then the stochastic
averaging method for quasi-non-integrable-Hamiltonian systems is introduced.
After that the asymptotic stability in probability in terms of the square-root of
averaged Hamiltonian is defined and it is shown how the necessary and sufficient
conditions for the asymptotic stability in probability of the trivial solution of a
quasi-non-integrable-Hamiltonian system can be obtained approximately by
examining the sample behaviors of the one-dimensional diffusion process of the
square-root of the averaged Hamiltonian.

2. BOUNDARY CLASSIFICATION

Consider a one-dimensional diffusive Markov process X(t) defined on [xl , xr ]
and governed by an Itô stochastic differential equation

dX(t)=m(X) dt+ s(X) dB(t), (1)

where m(X) and s(X) are known as the drift and diffusion coefficients,
respectively, and B(t) is a unit Wiener process. The left boundary xl may or may
not be −a, and the right boundary xr may or may not be +a. The behavior
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of a one-dimensional diffusion process at or near a boundary can be described by
the following four functions [11, 12]

l(x)=g
x

x0

c−1(u) du, n(x)=g
x

x0

c(u)
s2(u)

du, S(x)=g
x

x0

n(u) dl(u),

N(x)=g
x

x0

l(u) dn(u), (2)

where

c(x)= exp$g 2m(x)
s2(x)

dx%. (3)

l(x) is a scale function, n(x) is a speed function, S(x) is a measure of the time to
reach a point x from an interior point x0, and N(x) is a measure of the time to
reach an interior point x0 from a point x. A boundary of one-dimensional diffusion
process may be classified as follows. (1) Regular boundary: the process can either
reach the boundary from an interior point, or reach an interior point from the
boundary. (2) Exit boundary: the process can reach the boundary from an interior
point, but cannot reach an interior point from the boundary. (3) Entrance
boundary: the process can reach an interior point from the boundary, but cannot
reach the boundary from an interior point. (4) Natural boundary: the process
cannot reach the boundary from an interior point, nor can it reach an interior
point from the boundary.

In the above statements, ‘‘reach’’ means accessibility in finite time. A natural
boundary may be further classified as attractively natural, strictly natural and
repulsively natural [6, 12]. These various types of boundaries can be identified
according to the values of l(xb ), n(xb ), S(xb ) and N(xb ), as shown in Table 1
(Tables 1–4 are reproduced from references [2, 6]).

T 1†

Criteria‡
ZXXXXXXXXCXXXXXXXXV

l(xb ) n(xb ) S(xb ) N(xb ) Classifications

Qa* Qa* Qa Qa Regular Accessible
Qa* =a* Qa* =a Exit
Qa* =a* =a* =a Attractively natural
=a* Qa* =a =a Repulsively natural Inaccessible
=a* =a* =a =a Strictly natural
=a* Qa =a Qa* Entrance

† Modified from the original table of Karlin and Taylor [12].
‡ The asterisk indicate the minimal sufficient conditions for each type of boundary. For

example, the minimal sufficient conditions for a regular boundary are l(xb )Qa and
n(xb )Qa.
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T 2

Classification of singular boundary of the first kind†

State Conditions Class

as Q 1 Regular
s(xs )=0 as =1 m(xl )Q 0 Exit
(as q 0) or m(xr )q 0

m(xs )$ 0 m(xl )q 0 0Q cs Q 1 Regular
(bs =0) or m(xr )Q 0 cs e 1 Entrance
(shunt) as q 1 m(xl )Q 0 Exit

or m(xr )q 0
m(xl )q 0 Entrance

or m(xr )Q 0
s(xs )=0 as Q 1+ bs as Q 1 Regular
(as q 0) 1E as Q 2 Exit

m(xs )=0 as e 2 Attractively
(bs q 0) natural
(trap) as q 1+ bs bs Q 1 m(x+

l )Q 0 Exit
or m(x−

r )q 0
m(x+

l )q 0 Entrance
or m(x−

r )Q 0
bs e 1 m(x+

l )Q 0 Attractively
or m(x−

r )q 0 natural
m(x+

l )q 0 Repulsively
or m(x−

r )Q 0 natural
as =1+ bs bs Q 1 cs q bs cs e 1 Entrance

cs Q 1 Regular
cs E bs Exit

bs e 1 cs q bs Repulsively
natural

cs E bs cs e 1 Strictly
natural

cs Q 1 Attractively
natural

A boundary may be singular. It is called a singular boundary of the first kind
if the diffusion coefficient s vanishes, and a singular boundary of the second kind
if the drift coefficient m becomes unbounded. Further classification of a singular
boundary is based on the limiting behaviors of the drift and diffusion coefficients
near the boundary. Specially, singular boundary of the first kind is classified
depending on the values of the following parameters (see Table 2):

diffusion exponent as

s2(x)=O=x− xs =as, as e 0, as x:xs , (4)

drift exponent bs

m(x)=O=x− xs =bs, bs e 0, as x:xs , (5)
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character value cs

cl = lim
x:x+

l

2m(x)(x− xl )al − bl

s2(x)
, cr =−lim

x:x−
r

2m(x)(xr − x)ar − br

s2(x)
. (6)

The classification of a singular boundary of the second kind is also identified
based on the values of the diffusion exponent as , drift exponent bs and the
character value cs (see Tables 3 and 4 in Appendix A), but these parameters are
defined slightly differently as follows:

For =xs =Qa,

diffusion exponent as

s2(x)=O=x− xs =−as, as e 0, as x:xs , (7)

drift exponent bs

m(x)=O=x− xs =−bs, bs e 0, as x:xs , (8)

character value cs

cl = lim
x:x+

l

2m(x)(x− xl )bl − al

s2(x)
, cr =−lim

x:x−
r

2m(x)(xr − x)br − ar

s2(x)
. (9)

For =xs ==a,

diffusion exponent as

s2(x)=O=x=as, as e 0, as =x=:a, (10)

T 3

Classification of singular boundary of the second kind (=xs =Qa)

State Conditions Class

=m(xs )==a bs Q 1 Regular
(bs q 0) bs =1 cs E−1 Exit

s(xs )Qa −1Q cs Q 1 Regular
(as =0) cs e 1 Entrance

bs q 1 m(x+
l )Q 0 Exit

or m(x−
r )q 0

m(x+
l )q 0 Entrance

or m(x−
r )Q 0

=m(xs )==a bs Q 1+ as Regular
(bs q 0) bs q 1+ as m(x+

l )Q 0 Exit
s(xs )=a or m(x−

r )q 0
(as q 0) m(x+

l )q 0 Entrance
or m(x−

r )Q 0
bs =1+ as cs e−bs cs e 1 Entrance

cs Q 1 Regular
cs Q−bs Exit
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T 4

Classification of singular boundary of the second kind at infinity

State Conditions Class

m(a)==a m(−a)Q 0 bs q 1 Exit
(bs q 0) or m(+a)q 0 bs E 1 Attractively

s(a)Qa natural
(as =0) m(−a)q 0 bs q 1 Entrance

or m(+a)Q 0 bs E 1 Repulsively
natural

=m(a)==a bs q as −1 m(−a)Q 0 bs q 1 Exit
(bs q 0) or m(+a)q 0 bs E 1 Attractively

s(a)=a natural
(as q 0) m(−a)q 0 bs q 1 Entrance

or m(+a)Q 0 bs E 1 Repulsively
natural

bs Q as −1 Regular
bs = as −1 bE 1 cs q−bs Repulsively

natural
cs E−bs cs e−1 Strictly

natural
cs Q−1 Attractively

natural
bs q 1 cs q−bs cs e−1 Entrance

cs Q−1 Regular
cs E−bs Exit

drift exponent bs

m(x)=O=x=bs, bs e 0, as =x=:a, (11)

character value cs

cl = lim
x:−a

2m(x)=x=al − bl

s2(x)
, cr =−lim

x:a

2m(x)=x=ar − br

s2(x)
. (12)

3. STOCHASTIC AVERAGING OF QUASI-NON-INTEGRABLE-HAMILTONIAN
SYSTEMS

Consider an n DOF stochastically excited and dissipated Hamiltonian system
governed by the following n pairs of equations of motion

Q� i =
1H'
1Pi

(13a)

P� i =−
1H'
1Qi

− ocij
1H'
1Pj

+ o1/2fikwk (t), i, j=1, 2, . . . , n; k=1, 2, . . . , m,

(13b)

where Qi and Pi are generalized displacements and momenta, respectively;
H'=H'(Q, P) is a Hamiltonian with continuous second-order derivatives;
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cij = cij (Q, P) are differentiable functions; fik = fik (Q, P) are twice-differentiable
functions; o is a small parameter; and Wk (t) are Gaussian white noises in the sense
of Stratonovich with correlation functions

E[Wk (t)Wl (t+ t)]=2Dkld(t). (14)

The system governed by equations (13a) and (13b) is termed a quasi-Hamiltonian
one and it is generally non-linear. The first summation terms on the right side of
equation (13b) may represent a set of linear and (or) non-linear damping
mechanisms, while the second summation terms may include external and (or)
parametric excitations of Gaussian white noises.

Equations (13a) and (13b) are equivalent to the following set of Itô stochastic
differential equations

dQi =
1H'
1Pi

dt, (15a)

dPi =0−1H'
1Qi

− ocij
1H'
1Pj

+ oDklfjl
1fik

1Pj1 dt+ o1/2fik dBk (t),

i, j=1, 2, . . . , n; k, l=1, 2, . . . , m, (15b)

where Bk (t) are the Wiener processes. The double summation terms on the right
side of equation (15b) are known as the Wong–Zakai correction terms [13]. These
terms can usually be split into two parts: one has the effect of modifying the
conservative forces and another modifying the damping force. The first part can
be combined with −1H'/1Qi to form overall effective conservative forces
−1H/1Qi with the modified Hamiltonian H=H(Q, P) and with 1H/1Pi = 1H'/
1Pi . The second part may be combined with −ocij 1H'/1Pj to constitute effective
damping forces −omij 1H/1Pj with mij =mij (Q, P). With these accomplished,
equations (15a) and (15b) can be rewritten as

dQi =
1H
1Pi

dt, (16a)

dPi =−01H
1Qi

+ omij
1H
1Pj1 dt+ o1/2fik dBk (t),

i, j=1, 2, . . . , n; k=1, 2, . . . , m. (16b)

Assume that the Hamiltonian system with Hamiltonian H governed by
equations (16a) and (16b) where o=0 is non-integrable, i.e., the Hamiltonian
system has only one independent integral of motion, the Hamiltonian H. Then
equations (16a) and (16b), also equations (13a) and (13b), describe a
quasi-non-integrable-Hamiltonian system of n DOF.

It has been shown [10] that the response of the system governed by equations
(16a) and (16b) converges in probability to a one-dimensional diffusion process
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of averaged Hamiltonian as o:0. The averaged Hamiltonian is governed by the
following Itô equation

dH= oU(H) dt+ o1/2V(H) dB(t), (17)

where

U(H)=
1

T(H)VV1 gV $0−mij
1H
1pi

1H
1pj

+ Dkl fik fjl
12H

1pi 1pj1>1H
1p1% dq1 . . . dqn dp2 . . . dpn , (18a)

V 2(H)=
1

T(H)VV1 gV $2Dkl fik fjl
1H
1pi

1H
1pj>1H

1p1% dq1 . . . dqn dp2 . . . dpn , (18b)

T(H)=
1

VV1 gV 01>1H
1p11 dq1 . . . dqn dp2 . . . dpn , (18c)

VV1 =gV1

dq2 . . . dqn dp2 . . . dpn , (19)

in which domain V of the (2n−1)-fold integrals in equations (18a)–(18c) and
domain V1 of the (2n−2)-fold integral in equation (19) are defined as follows:

V= {(q1, . . . , qn , p2, . . . , pn )=H(q1, . . . , qn , 0, p2, . . . , pn )EH}, (20)

V1 = {(q2, . . . , qn , p2, . . . , pn )=H(0, q2, . . . , qn , 0, p2, . . . , pn )EH}. (21)

4. ASYMPTOTIC STABILITY IN PROBABILITY OF
QUASI-NON-INTEGRABLE-HAMILTONIAN SYSTEMS

The stability in probability and asymptotic stability in probability of the trivial
solution of a system response described by a n-dimensional stochastic vector x(t)
are defined as follows [2].

Stability in probability. The trivial solution is said to be stable in probability if,
for every pair of o1, o2 q 0, there exists a d(o1, o2, t0)q 0 such that

prob [>X(t; x0, t0)>e o1]E o2 te t0, (22)

provided >X0>E d, where X0 =X(t0) is deterministic.
Asymptotic stability in probability. The trivial solution is said to be

asymptotically stable in probability if equation (22) holds, and if for every oq 0
exists a d'(o, t0)q 0 such that

lim
t:a

prob [>X(t; x0, t0)>e o]=0, (23)

provided >X0>E d'.
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In the above definition, the boundedness and convergence of X(t) are defined
rigorously in terms of a suitable norm of X(t), denoted by >X(t)>, for example,

>X(t)>=$ s
n

i,j=1

aijXiXj%
1/2

, (24)

where aij are the elements of a positive definite square matrix.
In the last section it has been shown that the response of a quasi-non-integrable-

Hamiltonian system converges in probability to a one-dimensional diffusion
process of averaged Hamiltonian as o:0. For a linear non-gyroscopic
Hamiltonian system of n DOF, the Hamiltonian is of the form

H=
1
2

s
n

i,j=1

(BijPiPj +CijQiQj ), (25)

where Bij and Cij are constants representing the system parameters. It is seen from
the comparison of equations (24) and (25) that, for a quasi-non-integrable-
Hamiltonian system, it is suitable to take H1/2 as the norm of the response. This
is also the reason why we define the Lyapunov exponent in terms of H1/2 in
examining stochastic stability of quasi-integrable-Hamiltonian systems [14].
Although there is slight inconsistency between norm H1/2 and Euclidean norm,
such as equation (24) for the non-linear Hamiltonian system, it is meaningful
physically to take H1/2 as the norm of the response since H is usually the total
energy of the system. To define H1/2 as a norm also simplifies the decision of the
stochastic stability of quasi-Hamiltonian systems. Thus, instead of averaged
Hamiltonian, we will examine the square-root of the averaged Hamiltonian, which
is also a one-dimensional diffusion process.

Let

Y(t)=H1/2(t). (26)

The Itô stochastic differential equation governing Y(t) is obtained from equation
(17) by using the Itô differential rule as follows

dY= oa(Y) dt+(ob(Y ))1/2 dB(t), (27)

where

a(Y )= 1
2Y

−1U(Y )− 1
8Y

−3V 2(Y ), b(Y )= 1
4Y

−2V 2(Y ), (28)

in which U(Y ) and V 2(Y ) are obtained from U(H) and V 2(H) by replacing H with
Y 2. For the one-dimensional diffusion process Y(t) governed by Itô equation (27),
the left boundary is at the trivial solution Y=0 while the right boundary is usually
at infinity, H=a, if H varies monotonously from 0 to a and if there is no
constraint imposed on the response of the system. For quasi-non-integrable-
Hamiltonian systems with parametric excitations of Gaussian white noises, these
boundaries are often singular.

Stability in probability implies that most sample functions of the response
process remain near the trivial solution on the entire semi-infinite time domain
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t0 E tQa provided they are near the trivial solution initially. Asymptotic stability
in probability means that except the boundedness of most sample functions on
t0 E tQa, almost all sample functions of the response process converge to the
trivial solution as time goes to infinity. For one-dimensional diffusion process Y(t),
it is obvious that the requirements of asymptotic stability in probability can be
satisfied only if the trivial boundary is an exit or attractively natural, while the
infinite boundary is an entrance or repulsively natural.

The necessary and sufficient conditions of the asymptotic stability in probability
of the trivial solution of a quasi-non-integrable-Hamiltonian system governed by
equations (13a) and (13b) are thus obtained approximately from examining the
sample behaviors of one-dimensional diffusion process Y(t) governed by equation
(27) at boundaries Y=0, a. To do so, asymptotic analysis is necessary for
classifying the boundaries since a(Y ) and b(Y ) are defined in terms of multi-fold
integrals. These will be shown in detail in the following example.

5. EXAMPLE

To illustrate the proposed procedure for the decision of asymptotic stability in
probability of the trivial solution of the quasi-non-integrable-Hamiltonian systems
by using the stochastic averaging method and by examining the sample behaviors
of the one-dimensional diffusion process of the square-root of averaged
Hamiltonian at the two boundaries, consider a system of linearly and non-linearly
coupled two linearly and non-linearly damped oscillators subject to parametric
excitations of Gaussian white noises. The equations of motion are of the form

X� + b1X� + a1X 2X� +v2
1X+ aY+ b=X−Y=d sign (X−Y)=C1XW1(t),

Y� + b2Y� + a2Y 2Y� +v2
2Y+ aX+ b=X−Y=d sign (Y−X)=C2YW2(t), (29)

where v1 and v2 are the natural frequencies of the two uncoupled oscillators; bi

and ai are coefficients of linear and non-linear dampings; a and b are the constants
of linear and non-linear couplings; d is the power of non-linear coupling; Ci

represent the amplitudes of excitations; ai , bi and C 2
i are assumed of order o; and

Wi (t) are independent Gaussian white noises with intensities 2Di . In the case of
bi Q 0 and d=3, the system has been studied by To and Lin [15] using the
Stratonovich stochastic averaging method to determine the stochastic bifurcation,
by Zhu et al. [16] using the equivalent non-linear system method for stochastically
excited and dissipated non-integrable Hamiltonian systems, and by Zhu and Yang
[10] using the stochastic averaging method for quasi-non-integrable-Hamiltonian
systems to predict the response. Here we are going to obtain the necessary and
sufficient conditions for the asymptotic stability in probability of the trivial
solution of the system.

It is noted that there is no Wong–Zakai correction term in this system. The
Hamiltonian of the system is the total energy, i.e.

H= 1
2(X�

2 +Y� 2)+U(X, Y), (30)
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where

U(X, Y )= 1
2(v

2
1X 2 +v2

2Y2)+ aXY+
b

1+ d
=X−Y=1+ d. (31)

The Hamiltonian system governed by equation (29) without damping and random
excitations is usually non-integrable since U(X, Y) is non-separable when b$ 0
and d$ 0, 1. The dampings are light and random excitations are weak. So
equation (29) describes a quasi-non-integrable-Hamiltonian system.

Using the stochastic averaging method for the quasi-non-integrable-Hamil-
tonian systems introduced in section 3, one obtains the Itô equation for the
averaged Hamiltonian

dH=U(H) dt+V(H) dB(t), (32)

where, according to equations (18a)–(19), the drift and diffusion coefficients are

U(H)=
1

T(H)VV1 gV

{[−(b1 + a1x2)ẋ2 − (b2 + a2y2)ẏ2 +C 2
1D1x2

+ C 2
2D2y2]/ẋ} dx dy dẏ, (33a)

V 2(H)=
1

T(H)VV1 gV

[2(C2
1D1x2ẋ2 +C2

2D2y2ẏ2)/ẋ] dx dy dẏ, (33b)

T(H)VV1 =gV 01ẋ1 dx dy dẏ, (33c)

VV1 =gV

dy dẏ. (34)

and domains V and V1 are defined as follows:

V= {(x, y, ẏ)=H(x, y, 0, ẏ)EH}, V1 = {(y, ẏ)=H(0, y, 0, ẏ)EH}. (35, 36)

Completing the integration of equations (33a)–(34) with respect to ẏ and
introducing co-ordinate transformations

x=
R
v1

cos u, y=
R
v2

sin u. (37)

Equations (33a)–(34) become

U(H)=
2p

T(H)VV1 g
p

0 $−(b1 + b2)A(H, u)−0a1

v2
1
cos2 u+

a2

v2
2
sin2 u1B(H, u)

+
R4

2 0C2
1D1

v2
1

cos2 u+
C2

2D2

v2
2

sin2 u1% du, (38a)
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V 2(H)=
4p

T(H)VV1 g
p

0 $0C
2
1D1

v2
1

cos2 u+
C 2

2D2

v2
2

sin2 u1B(H, u)% du, (38b)

T(H)VV1 =2p g
p

0

R2 du, (38c)

VV1 =g
p

0

r2 du, (39)

where

A(H, u)=HR2 −
R4

4 01+
a

v1v2
sin 2u1−

2b
(1+ d)(3+ d)

R3+ dbcos u

v1
−

sin u

v2 b
1+ d

,

(40)

B(H, u)=
HR4

2
−

R6

6 01+
a

v1v2
sin 2u1−

2b
(1+ d)(5+ d)

R5+ dbcos u

v1
−

sin u

v2 b
1+ d

,

(41)

and R and r are the solutions of the following two equations:

H−
R2

2 01+
a

v1v2
sin 2u1−

b
(1+ d)

R1+ dbcos u

v1
−

sin u

v2 b
1+ d

=0, (42)

H−
r2

2
sin2 u−

r2

2
v2

2 cos2 u−
b

(1+ d)
r1+ d=cos u=1+ d =0. (43)

The drift and diffusion coefficients of the one-dimensional diffusion process of the
square-root of averaged Hamiltonian, Y=H1/2, are then

a(Y )= 1
2Y

−1U(Y )− 1
8Y

−3V 2(Y ), b(Y )= 1
4Y

−2V 2(Y ), (44, 45)

where U(Y ) and V2(Y ) are obtained from equations (38a) and (38b) with H
replaced by Y2. In the following, the classification of the boundaries Y=0, a of
the one-dimensional diffusion process Y will be identified and the necessary and
sufficient conditions will be approximately obtained for the asymptotic stability
in probability of the trivial solution of system (29) through asymptotic analysis
of a(Y ) and b(Y ) near the boundaries Y=0, a. Four cases are examined with
the emphasis placed on the effects of non-linear damping and non-linear coupling
on the stability conditions.

Case 1: ai $ 0 and 0Q dQ 1. First consider the left boundary Y=0. It is seen
from equation (42) that R:0 as H:0 and the third term is dominant compared
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with the second term on the left side of equation (42) except that u is in the interval
u$ [u0 − u1, u0 + u1] where =(cos u/v1)− (sin u/v2)=1+ d is very small. Thus, as H:0,

R2:
02−

=u− u0=
u1 1H

1+
a

v1v2
sin 2u

, u$ [u0 − u1, u0 + u1], (46)

R:$(1+ d)bH
b %

1/(1+ d)

>zv2
1 +v2

2

v1v2
=sin (u− u0)=,

u$ [0, u0 − u1) and u$(u0 + u1, p], (47)

where

u0 =arctg
v2

v1

u1 =01+ d

b 1
1/"1+ d)

v1v2

zv2
1 +v2

2
012+

a
v2

1 +v2
21

1/2

H(1− d)/2(1+ d),

b=1 for uE u0 −0·05p or ue u0 +0·05p,

b=1−
u− u0 +0·05p

2(0·05p− u1)
for (u0 −0·05p)Q uQ (u0 − u1),

b=1+
u− u0 −0·05p

2(0·05p− u1)
for (u0 +0·05p)q uq (u0 + u1). (48)

The exact solution of equation (42) and the approximate solution in equations (46)
and (47) are compared in Appendix A. It is seen that they are in good agreement.
Substituting equations (46) and (47) into equations (40) and (41) and then into
equations (38a)–(38c) and completing the integration in equations (38a)–(39) (see
Appendix B) leads to

U(H)= l1H+ o(H) as H:0, (49)

V 2(H)= l2H 2 + o(H 2) as H:0, (50)

where o(H) denotes a term one-order smaller than H, l1 and l2 are

l1 =−
1
3

(b1 + b2)h1 +
7
9

C2
1D1 +C2

2D2

2a+v2
1 +v2

2
, l2 =

2
3

(C2
1D1 +C2

2D2)
(2a+v2

1 +v2
2 )

h2, (51, 52)

in which

h1 =
11
6

−
1+ d

4(4+ d)
−

2(2− d)
(2+ d)(3+ d)

+
d2 −1

48(5+ d)
,

h2 =
13
12

−
16

(5+ d)(2+ d)
+

4
3+ d

−
3+ d

2(4+ d)
+

(3+ d)(1+ d)
24(5+ d)

.



. .   . . 782

The asymptotic expressions for the drift and diffusion coefficients of Y(t) at Y=0
are thus

a(Y )= 1
8(4l1 − l2)Y+ o(Y ), as Y:0, (53)

b(Y )= 1
4l2Y 2 + o(Y2), as Y:0. (54)

The left boundary Y=0 is a singular one of the first kind and according to
equations (4)–(6), the diffusion exponent, drift exponent and character value are

al =2, bl =1, cl =
4ll − l2

l2
. (55)

It is seen from Table 2 that the further classification of the boundary depends on
the value of cl : it is

attractively natural if cl Q 1,

strictly natural if cl =1,

repulsively natural if cl q 1. (56)

Now consider the right boundary Y=a. It is seen from equation (42) that the
second term is dominant compared with the third term as H:a. Thus,

R2:
2H

1+
a

v1v2
sin 2u

, as H:a. (57)

Substituting equation (57) into equations (40) and (41) and then into equations
(38a)–(38c) and completing the integration in equations (38a)–(39) leads to

U(H)=−
1
6 0a1

v2
1
+

a2

v2
21hH 2 + o(H 2), (58)

V 2(H)=
1
3 0C2

1D1

v2
1

+
C2

2D2

v2
2 1hH 2 + o(H 2), (59)

where

h=g
p

0

du

01+
a

v1v2
sin 2u1

2?g p

0

du

1+
a

v1v2
sin 2u

. (60)

The drift and diffusion coefficients of the one-dimensional diffusion process Y(t)
are thus

a(Y)=−
1
12 0a1

v2
1
+

a2

v2
21hY3 + o(Y3), (61)



0 ∞

EntranceAttractively naturalcl <1

0 ∞

EntranceStrictly naturalcl =1

0 ∞

EntranceRepulsively naturalcl >1
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b(Y )=
1
12 0C2

1D1

v2
1

+
C2

2D2

v2
2 1hY 2 + o(Y 2). (62)

The right boundary Y=a is a singular boundary of the second kind. The
diffusion exponent, drift exponent and character value at the right boundary,
according to equations (10)–(12), are

ar =2, br =3, cr =
2(a1v

2
2 + a2v

2
1 )

C2
1D1v

2
2 +C2

2D2v
2
1
. (63)

It is seen from Table 4 that the right boundary is always the entrance provided
that (a1v

2
2 + a2v

2
1 )q 0.

The behaviors of the two boundaries are schematically shown in Figure 1. The
only case where Y=0 is asymptotic stable in probability is when the left boundary
is attractively natural while the right boundary is the entrance. Therefore, the
necessary and sufficient conditions for the asymptotic stability in probability of
the trivial solution of system (29) in this case are approximately

(a1v
2
2 + a2v

2
1 )q 0 (64)

and

b1 + b2 q
(C2

1D1 +C2
2D2)

(2a+v2
1 +v2

2 ) $ 7
3h1

−
h2

h1%. (65)

If equations (64) and (65) are satisfied, the stationary probability density of the
system response is a delta function at the trivial solution. In the case of cl q 1, a
non-delta type stationary probability density exists since both the two boundaries
are now unreachable if a sample path begins from an interior point. The existence
of a non-delta type stationary probability density implies that the trivial solution
is unstable in probability.

Figure 1. The behavior of the two boundaries.
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Case 2: ai =0 and 0Q dQ 1. In this case the behavior of the left boundary is
the same as in Case 1. It can be shown that at the right boundary

a(Y )=
1
4 $−(b1 + b2)+

5h

6 0C2
1D1

v2
1

+
C2

2D2

v2
2 1%Y+ o(Y ), (66)

b(Y )=
h

12 0C2
1D1

v2
1

+
C2

2D2

v2
2 1%Y 2 + o(Y 2). (67)

The right boundary is a singular one of the second kind. The diffusion exponent,
drift exponent and character value, according to equations (10)–(12), are

ar =2, br =1, cr =

−$−(b1 + b2)+
5h

6 0C2
1D1

v2
1

+
C2

2D2

v2
2 1%

$h6 0C2
1D1

v2
1

+
C2

2D2

v2
2 1%

. (68)

The right boundary is repulsively natural, strictly natural or attractively natural
depending on cr q−1, cr =−1 or cr Q−1, respectively. There are in total nine
possible combinations of the behaviors of the two boundaries and the only case
where the trivial solution is asymptotically stable in probability is when the left
boundary is attractively natural while the right boundary is repulsively natural.
Therefore, the necessary and sufficient condition for the asymptotic stability in
probability of the trivial solution of system (29) is approximately equation (65),
or

b1 + b2 q
2
3

h0C2
1D1

v2
1

+
C2

2D2

v2
2 1, (69)

depending on which is more severe.
Case 3: ai $ 0 and dq 1. In this case the second term in equation (42) is

dominant compared with the third term for small H. Thus,

R2:
2H

1+
a

v1v2
sin 2u

, as H:0. (70)

Substituting equation (70) into equations (40) and (41), then into equations
(38a)–(38c) and completing the integration in equations (38a)–(39), one obtains

a(Y)=
1
4 $−(b1 + b2)+

5
6 0C2

1D1

v2
1

+
C2

2D2

v2
2 1h%Y+ o(Y), (71)

b(Y)=
1
12 0C2

1D1

v2
1

+
C2

2D2

v2
2 1%hY2 + o(Y2). (72)
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The left boundary is a singular one of the first kind. The diffusion exponent, drift
exponent and character value, defined by equations (4)–(6), are

al =2, bl =1, cl =
$−(b1 + b2)+

5
6 0C2

1D1

v2
1

+
C2

2D2

v2
2 1h%

$16 0C2
1D1

v2
1

+
C2

2D2

v2
2 1h%

. (73)

According to Table 2, the left boundary Y=0 is attractively natural, strictly
natural or repulsively natural depending on whether cl Q 1, cl =1 or cl q 1,
respectively.

In equation (42), the third term is dominant compared with the second term in
the intervals u$ [0, u0 − u1) and u$(u0 + u1, p] while the second term is dominant
in the interval u$ [u0 − u1, u0 + u1] for H:a. Thus, equations (46) and (47) hold
in this case. Using the same procedure as that leading to equations (53) and (54),
one obtains

a(Y )=−
h2

6
a1 + a2

2a+v2
1 +v2

2
Y 3 + o(Y 3), (74)

b(Y )=
h2

6
C2

1D1 +C2
2D2

2a+v2
1 +v2

2
Y 2 + o(Y 2). (75)

The right boundary Y=a is a singular one of the second kind. The diffusion
exponent, drift exponent and character value, defined in equations (10)–(12), are

ar =2, br =3, cr =
2(a1 + a2)

(C2
1D1 +C2

2D2)
(76)

and a(a)Q 0.
According to Table 4, the right boundary is an entrance. The trivial solution

Y=0 is asymptotically stable in probability when the left boundary is attractively
natural. Therefore, the necessary and sufficient condition for the asymptotic
stability in probability of the trivial solution of system (29) is approximately

b1 + b2 q
2
3

h0C2
1D1

v2
1

+
C2

2D2

v2
2 1. (77)

Case 4: ai =0 and dq 1. In this case the left boundary is the same as in Case
3. As for the right boundary, it can be shown that

a(Y)=$−b1 + b2

6
h1 +

(C2
1D1 +C2

2D2)
2a+v2

1 +v2
2 0 7

18
−

h2

121%Y+ o(Y), (78)

b(Y)=
h2

6
C2

1D1 +C2
2D2

2a+v2
1 +v2

2
Y2 + o(Y). (79)
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The right boundary is a singular one of the second kind. The diffusion exponent,
drift exponent and character value, according to equations (10)–(12), are

ar =2, br =1, cr =
2(2a+v2

1 +v2
2 )(b1 + b2)h1

(C2
1D1 +C2

2D2)h2
+01−

14
3h21. (80)

It is seen from Table 4 that the right boundary is attractively natural, strictly
natural or repulsively natural depending for cr Q−1, cr =−1 or cr q−1,
respectively. The trivial solution Y=0 is asymptotic stable in probability when
the left boundary is attractively natural while the right boundary is repulsively
natural. Thus, the necessary and sufficient condition for the asymptotic stability
in probability of the trivial solution of system (29) is equation (77) or

b1 + b2 q0 7
3h1

−
h2

h11 C2
1D1 +C2

2D2

2a+v2
1 +v2

2
, (81)

depending on which is more severe.

6. CONCLUSION

In the present paper a procedure for obtaining approximately the necessary and
sufficient conditions for asymptotic stability in probability of the trivial solution
of quasi-non-integrable-Hamiltonian systems has been developed. It has been
suggested that the asymptotic stability in probability for this kind of systems is
defined in terms of the square-root of the Hamiltonian. The stochastic averaging
method for quasi-non-integrable-Hamiltonian systems has been employed to
reduce such a system to a one-dimensional diffusion process of averaged
Hamiltonian. Then the Itô stochastic differential equation governing the
one-dimensional diffusion process of the square-root of averaged Hamiltonian was
obtained by using the Itô differential rule. The asymptotic stability in probability
of the trivial solution of the quasi-non-integrable-Hamiltonian systems was
determined by examining the sample behaviors of the one-dimensional diffusion
process of the square-root of averaged Hamiltonian at the two boundaries. A
system of linearly and non-linearly coupled two non-linearly damped oscillators
subject to parametric excitations of Gaussian white noises was used as an example
to illustrate the proposed procedure, and the effects of non-linear damping and
non-linear coupling on the stability conditions were analysed in detail.

ACKNOWLEDGMENT

The work reported in this paper is supported by the National Natural Science
Foundation of China under grant no. 19672054 and the Special Fund for Doctor
Programs in Institutions of Higher Learning of China and the Cao Guang Biao
Science Foundation of Zhejiang University.



---  787

REFERENCES

1. F. K 1969 Automatica 5, 95–112. A survey of stability of stochastic systems.
2. Y. K. L and G. Q. C 1995 Probabilistic Structural Dynamics, Advanced Theory

and Applications. New York: McGraw-Hill, Inc.
3. F. K and Y. S 1987 Proceedings of the 2nd Midwestern Mechanics

Conference, West Lafayette, IN 14(a), 291–298. An application of the averaging
method to noise stabilization of nonlinear system.

4. N. S N 1989 Solid Mechanics Archives 14, 131–142. Instability
theorem based on the nature of the boundary behaviour for one-dimensional diffusion.

5. Z. Y. Z 1991 Ph.D dissertation, Polytechnic University, New York. New
developments in almost-sure sample stability of nonlinear stochastic dynamical
systems.

6. Y. K. L and G. Q. C 1994 International Journal of Nonlinear Mechanics 29,
539–553. Stochastic stability of nonlinear systems.

7. R. L. S 1963 Topics in the Theory of Random Noise, Volume 1. New
York: Gordon and Breach.

8. P. S. L and R. L. S 1962 Vestinik MGU (Proc. of Moscow
University), Series III(1), 33–45. Theory of stochastic transitions of various systems
between different states (in Russian).

9. R. Z. K 1964 Prikladnaya Matematika i Mechanica (Applied Mathematics
and Mechanics) 28, 1126–1130. On the behavior of a conservative system with small
friction and small random noise.

10. W. Q. Z and Y. Q. Y 1997 ASME Journal of Applied Mechanics 64, 157–164.
Stochastic averaging of quasi-nonintegrable-Hamiltonian systems.

11. W. F 1952 Annals of Mathematics 55, 468–519. The parabolic differential
equation and the associated semigroups of transformations.

12. S. K and H. M. T 1981 A Second Course in Stochastic Process. New York:
Academic Press.

13. E. W and M. Z 1965 International Journal of Engineering Science 3, 213–229.
On the relation between ordinary and stochastic equations.

14. W. Q. Z and Z. L. H 1998 (in press) ASME Journal of Applied Mechanics.
Lyapunov exponents and stochastic stability of quasi-integrable-Hamiltonian systems.

15. C. W. S. T and R. L 1989 Structural Safety 6, 223–231. Bifurcation in a
stochastically disturbed nonlinear two-degree-of-freedom system.

16. W. Q. Z, T. T. S and Y. L 1994 ASME Journal of Applied Mechanics 61,
618–623. Equivalent nonlinear system method for stochastically excited Hamiltonian
systems.

17. R. Z. K 1967 Theory of Probability and Application 12, 144–147. Sufficient
and necessary conditions of almost-sure asymptotic stability of a linear stochastic
system.

APPENDIX A

Let H=10−6, a= d=0·5, v1 =v2 = b=1. One obtains from equation (48)
that u0 = p/4 and u1 =0·08024. The exact solution of equation (42) and the
approximate solution obtained from equations (46) and (47) are compared in
Figure 2.

APPENDIX B

The integral in equation (38a) can be divided into three parts

g
p

0

[ · ] du=g
u0 − u1

0

[ · ] du+g
u0 + u1

u0 − u1

[ · ] du+g
p

u0 + u1

[ · ] du, (B1)
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Figure 2. The exact solution of equation (42) and the approximate solution obtained from
equations (46) and (47). —R—, Approximate solution; —W—, exact solution.

where [ · ] represents the integrand in the integrals. R in the integrand of the second
integral on the right side of equation (B1) takes the value in equation (46) while
those in the first and third integrals the value in equation (47). The second integral
is dominant since it is proportional to H1+ (3+ d)/2(1+ d) while the first and the third
ones to H1+ (4/2(1+ d)) as H:0. Also, u1:0 as H:0, so cos2 u, sin2 u and sin 2u in
the integrand can be replaced approximately by cos2 u0, sin2 u0 and sin 2u0,
respectively, and sin (u− u0) by u− u0 since 0E u− u0 E u1. Thus,

g
p

0

[ · ] du c g
u0 + u1

u0 − u1

[ · ] du=2 g
u0 + u1

u0

[ · ] duc2(a1 + a2) g
u0 + u1

u0

A(H, u) du

− 20b1

v2
1
cos2 u0 +

b2

v2
2
sin2 u01 g

u0 + u1

u0

B(H, u) du

+ 0C2
1D1

v2
1

cos2 u0 +
C2

2D2

v2
2

sin2 u01 g
u0 + u1

u0

R4 du, (B2)

where

g
u0 + u1

u0

A(H, u) du c
11H 2u1

1201+
a

v1v2
sin 2u01

−
2b

(1+ d)(3+ d) 2 2H

1+
a

v1v2
sin 2u03

(3+ d)/2

× 0zv2
1 +v2

2

v1v2 1
1+ d

g
u1

0 01−
u

2u11
(3+ d)/2

u1+ d du, (B3)
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g
u0 + u1

u0

B(H, u) du c
13H 2u1

2401+
a

v1v2
sin 2u01

2

−
2b

(1+ d)(5+ d) 2 2H

1+
a

v1v2
sin 2u03

(5+ d)/2

× 0zv2
1 +v2

2

v1v2 1
1+ d

g
u1

0 01−
u

2u11
(5+ d)/2

u1+ d du, (B4)

g
u0 + u1

u0

R4 du c
7H 2u1

301+
a

v1v2
sin 2u01

. (B5)

To complete the integration in equations (B3) and (B4), the integrands are first
expanded into power series in u and then the terms higher than u3 are neglected.
The results are

g
u1

0 01−
u

2u11
(3+ d)/2

u1+ d du c $ 1
2+ d

−
1
4
+

(3+ d)(1+ d)
32(4+ d)

−
(3+ d)(d2 −1)

384(5+ d) %u2+ d
1 , (B6)

g
u1

0 01−
u

2u11
(5+ d)/2

u1+ d du c $ 1
2+ d

−
5+ d

4(3+ d)
+

(5+ d)(3+ d)
32(4+ d)

−
(3+ d)(1+ d)

384 %u2+ d
1 . (B7)

The relative errors in the integrals (B6) and (B7) caused by neglecting the higher
order terms are less than 10−3.

The integral in equation (38b) can be treated similarly.


